Fall 2025 theses and dissertations (non-restricted) will be available in ERA on November 17, 2025.

Visualization of dynein-dependent microtubule gliding at the cell cortex: implications for spindle positioning

Loading...
Thumbnail Image

Date

Citation for Previous Publication

Gusnowski, E. M., & Srayko, M. (2011). Visualization of dynein-dependent microtubule gliding at the cell cortex: implications for spindle positioning. The Journal of Cell Biology, 194(3), 377-386.

Link to Related Item

Abstract

Description

Dynein motors move along the microtubule (MT) lattice in a processive “walking” manner. In the one-cell Caenorhabditis elegans embryo, dynein is required for spindle-pulling forces during mitosis. Posteriorly directed spindle-pulling forces are higher than anteriorly directed forces, and this imbalance results in posterior spindle displacement during anaphase and an asymmetric division. To address how dynein could be asymmetrically activated to achieve posterior spindle displacement, we developed an assay to measure dynein’s activity on individual MTs at the embryo cortex. Our study reveals that cortical dynein motors maintain a basal level of activity that propels MTs along the cortex, even under experimental conditions that drastically reduce anaphase spindle forces. This suggests that dynein-based MT gliding is not sufficient for anaphase spindle-pulling force. Instead, we find that this form of dynein activity is most prominent during spindle centering in early prophase. We propose a model whereby different dynein–MT interactions are used for specific spindle-positioning tasks in the one-cell embryo.

Item Type

http://purl.org/coar/resource_type/c_6501 http://purl.org/coar/version/c_970fb48d4fbd8a85

Alternative

License

Other License Text / Link

© 2011 Gusnowski and Srayko This article is distributed under the terms of a Creative Commons License (Attribution–Noncommercial–Share Alike 3.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/3.0/).

Language

en

Location

Time Period

Source