Fall 2025 theses and dissertations (non-restricted) will be available in ERA on November 17, 2025.

State Evaluation and Opponent Modelling in Real-Time Strategy Games

Loading...
Thumbnail Image

Institution

http://id.loc.gov/authorities/names/n79058482

Degree Level

Master's

Degree

Master of Science

Department

Department of Computing Science

Supervisor / Co-Supervisor and Their Department(s)

Examining Committee Member(s) and Their Department(s)

Citation for Previous Publication

Link to Related Item

Abstract

Designing competitive Artificial Intelligence (AI) systems for Real-Time Strategy (RTS) games often requires a large amount of expert knowledge (resulting in hard-coded rules for the AI system to follow). However, aspects of an RTS agent can be learned from human replay data. In this thesis, we present two ways in which information relevant to AI system design can be learned from replays, using the game StarCraft for experimentation. First we examine the problem of constructing build-order game payoff matrices from replay data, by clustering build-orders from real games. Clusters can be regarded as strategies and the resulting matrix can be populated with the results from the replay data. The matrix can be used to both examine the balance of a game and find which strategies are effective against which other strategies. Next we look at state evaluation and opponent modelling. We identify important features for predicting which player will win a given match. Model weights are learned from replays using logistic regression. We also present a metric for estimating player skill, which can be used as features in the predictive model, that is computed using a battle simulation as a baseline to compare player performance against. We test our model on human replay data giving a prediction accuracy of > 70% in later game states. Additionally, our player skill estimation technique is tested using data from a StarCraft AI system tournament, showing correlation between skill estimates and tournament standings.

Item Type

http://purl.org/coar/resource_type/c_46ec

Alternative

License

Other License Text / Link

This thesis is made available by the University of Alberta Libraries with permission of the copyright owner solely for non-commercial purposes. This thesis, or any portion thereof, may not otherwise be copied or reproduced without the written consent of the copyright owner, except to the extent permitted by Canadian copyright law.

Language

en

Location

Time Period

Source