Fall 2025 theses and dissertations (non-restricted) are available in ERA.

Design of Optimal Frameworks for Wideband/Multichannel Spectrum Sensing in Cognitive Radio Networks

Loading...
Thumbnail Image

Institution

http://id.loc.gov/authorities/names/n79058482

Degree Level

Master's

Degree

Master of Science

Department

Department of Electrical and Computer Engineering

Supervisor / Co-Supervisor and Their Department(s)

Examining Committee Member(s) and Their Department(s)

Citation for Previous Publication

Link to Related Item

Abstract

Several optimal detection frameworks for wideband/multichannel spectrum sensing in cognitive radio networks are proposed. All frameworks search for multiple secondary transmission opportunities over a number of narrowband channels, enhancing the secondary network performance while respecting the primary network integrity and keeping the interference limited. Considering a periodic sensing scheme with either uniform or non-uniform channel sensing durations, the detection problems are formulated as joint optimization of the sensing duration(s) and individual detector parameters to maximize the aggregate achievable secondary throughput capacity given some bounds/limits on the overall interference imposed on the primary network. It is demonstrated that all the formulated optimization problems can be solved using “convex” optimization if certain practical constraints are applied. Simulation results attest that the proposed frameworks achieve superior performance compared to contemporary frameworks. To realize efficient implementation, an iterative low-complexity algorithm which solves one of the optimization problems with much lower complexity compared to other numerical methods is presented. It is established that the iteration-complexity and the complexity-per-iteration of the proposed algorithm increases linearly with the number of optimization variables (i.e. the number of narrowband channels).

Item Type

http://purl.org/coar/resource_type/c_46ec

Alternative

License

Other License Text / Link

This thesis is made available by the University of Alberta Libraries with permission of the copyright owner solely for non-commercial purposes. This thesis, or any portion thereof, may not otherwise be copied or reproduced without the written consent of the copyright owner, except to the extent permitted by Canadian copyright law.

Language

en

Location

Time Period

Source