Fall 2025 theses and dissertations (non-restricted) will be available in ERA on November 17, 2025.

If It Ain’t Broke, Don’t Fix It: the Unintended Consequences of Large Language Model Code Repairs

dc.contributor.authorXiaofei Yu
dc.contributor.authorThibaud Lutellier
dc.date.accessioned2025-05-01T20:49:24Z
dc.date.available2025-05-01T20:49:24Z
dc.date.issued2024-08-01
dc.descriptionNowadays, we heavily rely on ChatGPT to generate content, including writing code. But have you ever thought about the scenario where you input the correct content while GPT outputs a bug? This project aims to explore the unintended consequences of code repairs made by large language models. By comparing the original correct code with the code generated by the language model, we evaluate whether these repairs are accurate.
dc.identifier.doihttps://doi.org/10.7939/r3-218h-wg78
dc.language.isoen
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/
dc.subjectLLM
dc.subjectchatGPT
dc.subjectCode
dc.subjectBug
dc.titleIf It Ain’t Broke, Don’t Fix It: the Unintended Consequences of Large Language Model Code Repairs
dc.typehttp://purl.org/coar/resource_type/c_c513
ual.jupiterAccesshttp://terms.library.ualberta.ca/public

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
1.pdf
Size:
364.22 KB
Format:
Adobe Portable Document Format