Fall 2025 theses and dissertations (non-restricted) will be available in ERA on November 17, 2025.

Adaptive Network Protocol Selection: A Machine-Learning Approach

Loading...
Thumbnail Image

Institution

http://id.loc.gov/authorities/names/n79058482

Degree Level

Doctoral

Degree

Doctor of Philosophy

Department

Department of Computing Science

Supervisor / Co-Supervisor and Their Department(s)

Citation for Previous Publication

Link to Related Item

Abstract

We introduce "optimization through protocol selection" (OPS) as a technique to improve bulk-data transfer on shared wide-area networks (WANs). Instead of tuning the parameters of a network protocol, our empirical results show that the selection of the protocol itself can result in up to four times higher throughput in some key cases. However, OPS for the foreground traffic (e.g., TCP CUBIC, TCP BBR) depends on knowledge about the network protocols used by the background traffic (i.e., other users). Yet, global knowledge can be difficult to obtain in a dynamic distributed system like a WAN.

Therefore, we introduce and evaluate a machine-learning (ML) approach for recognizing the background mix of protocols on a shared network. We build and empirically evaluate several ML classifiers, trained on local round-trip time (RTT) time-series data gathered using "passive probing" or "active probing", to recognize the mix of TCP CUBIC versus TCP BBR congestion control algorithms (CCAs) in the background with an accuracy of up to 95%. Then, a decision process selects the best protocol to use for the new foreground transfer, so as to maximize throughput while maintaining fairness (i.e., OPS).

Lastly, we describe the design, implementation, and evaluation of iPerfOPS, the first tool that uses OPS to perform bulk-data transfer. The new tool is a substantially modified version of the well-known iPerf tool, and is an end-to-end implementation that incorporates previous research results. Our evaluation of iPerfOPS shows a bandwidth utilization close to the fair (i.e., equal) sharing if used with an appropriate probing pattern.

Item Type

http://purl.org/coar/resource_type/c_46ec

Alternative

License

Other License Text / Link

This thesis is made available by the University of Alberta Libraries with permission of the copyright owner solely for non-commercial purposes. This thesis, or any portion thereof, may not otherwise be copied or reproduced without the written consent of the copyright owner, except to the extent permitted by Canadian copyright law.

Language

en

Location

Time Period

Source