Navigation in Adversarial Environments Guided by PRA* and a Local RL Planner

Loading...
Thumbnail Image

Institution

http://id.loc.gov/authorities/names/n79058482

Degree Level

Master's

Degree

Master of Science

Department

Department of Computing Science

Supervisor / Co-Supervisor and Their Department(s)

Citation for Previous Publication

Link to Related Item

Abstract

Real-time strategy games require players to respond to short-term challenges (micromanagement) and long-term objectives (macromanagement) simultaneously to win. However, many players excel at one of these skills but not both. This research studies whether the burden of micromanagement can be reduced on human players through delegation of responsibility to autonomous agents. In particular, this research proposes an adversarial navigation architecture that enables units to autonomously navigate through places densely populated with enemies by learning to micromanage itself. Our approach models the adversarial pathfinding problem as a Markov Decision Process (MDP) and trains an agent with reinforcement learning on this MDP. We observed that our approach resulted in the agent taking less damage from adversaries while traveling shorter paths, compared to previous approaches on adversarial navigation. Our approach is also efficient in memory use and computation time. Interestingly, the agent using the proposed approach outperformed baseline approaches while navigating through environments that are significantly different from the training environments. Furthermore, when the game design is modified, the agent discovers effective alternate strategies considering the updated design without any changes in the learning framework. This property is particularly useful because in game development the design of a game is often updated iteratively.

Item Type

http://purl.org/coar/resource_type/c_46ec

Alternative

License

Other License Text / Link

This thesis is made available by the University of Alberta Libraries with permission of the copyright owner solely for non-commercial purposes. This thesis, or any portion thereof, may not otherwise be copied or reproduced without the written consent of the copyright owner, except to the extent permitted by Canadian copyright law.

Language

en

Location

Time Period

Source