Fall 2025 theses and dissertations (non-restricted) are available in ERA.

High resolution optical tweezers for single molecule studies of hierarchical folding in the pbuE riboswitch aptamer

Loading...
Thumbnail Image

Institution

http://id.loc.gov/authorities/names/n79058482

Degree Level

Master's

Degree

Master of Science

Department

Department of Physics

Supervisor / Co-Supervisor and Their Department(s)

Examining Committee Member(s) and Their Department(s)

Citation for Previous Publication

Link to Related Item

Abstract

Riboswitches are gene regulatory elements found in messenger RNA that function by changing structure upon the binding of a ligand to an aptamer domain. Single adenine-binding pbuE riboswitch aptamer RNAs were unfolded and refolded co-transcriptionally using optical tweezers for single molecule force spectroscopy. The kinetic and energetic properties of distinct folding intermediates were characterised with and without the binding of adenine. These observed intermediates were related to structural elements of the aptamer, which were found to fold sequentially, in a transcriptionally independent manner. The mechanical switch underlying the regulatory action of the riboswitch was observed directly (adenine stabilisation of the weakest helix), and the energy landscape for the folding was reconstructed. The construction of a dual-beam optical trap with separate detection and trapping laser beams manipulated and focused into a rigid, modified inverted microscope is also described. This instrument aims to achieve ångström-level resolution through careful design to reduce noise.

Item Type

http://purl.org/coar/resource_type/c_46ec

Alternative

License

Other License Text / Link

This thesis is made available by the University of Alberta Libraries with permission of the copyright owner solely for non-commercial purposes. This thesis, or any portion thereof, may not otherwise be copied or reproduced without the written consent of the copyright owner, except to the extent permitted by Canadian copyright law.

Language

en

Location

Time Period

Source