Optimization of sodium MRI for the human knee at 4.7 tesla
Date
Author
Institution
Degree Level
Degree
Department
Supervisor / Co-Supervisor and Their Department(s)
Examining Committee Member(s) and Their Department(s)
Citation for Previous Publication
Link to Related Item
Abstract
Osteoarthritis is characterized by pain and inflammation in joints, typically weight-bearing joints such as the knee. An early warning sign of osteoarthritis is the loss of proteoglycan molecules in the cartilage matrix. A surrogate method for measuring proteoglycan loss is detection of sodium ions, which ionically bond to negatively charged glycosaminoglycan side chains. Sodium MRI has the potential to non-invasively measure proteoglycan content, and hence act as a diagnostic tool for osteoarthritis. However, as sodium MRI suffers from low sodium concentrations in vivo and reduced MR sensitivity compared to standard proton MRI, techniques are required which optimize signal. This thesis examines the hardware, software, and acquisition techniques required in order to achieve high resolution, excellent quality sodium MR images of the human knee in vivo, which has potential applications in early diagnosis as well as pharmacological treatment evaluations of osteoarthritis.
